DocumentCode :
1683140
Title :
Fast missing-data IAA by low rank completion
Author :
Karlsson, Johan ; Rowe, Wayne ; Luzhou Xu ; Glentis, George ; Jian Li
Author_Institution :
Dept. of Electr. & Comput. Eng., Univ. of Florida, Gainesville, FL, USA
fYear :
2013
Firstpage :
6215
Lastpage :
6219
Abstract :
The adaptive spectral estimation method IAA provides better performance than the periodogram at the cost of higher computational complexity. Current fast IAA algorithms reduce the computational complexity using Toeplitz/Vandermonde structures, but are not efficient for missing data cases when the number of missing samples is small. We considerably reduce the computational complexity compared to the state-of-the-art by using a low rank completion to transform the problem to a Toeplitz/Vandermonde structured problem.
Keywords :
computational complexity; iterative methods; spectral analysis; Toeplitz-Vandermonde structures; adaptive spectral estimation method IAA; computational complexity; fast missing-data IAA; iterative adaptive approach; low rank completion; Computational complexity; Covariance matrices; Educational institutions; Estimation; Iterative methods; Spectral analysis; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on
Conference_Location :
Vancouver, BC
ISSN :
1520-6149
Type :
conf
DOI :
10.1109/ICASSP.2013.6638860
Filename :
6638860
Link To Document :
بازگشت