DocumentCode :
1683259
Title :
Parameter estimation and waveform design for cognitive radar by minimal free-energy principle
Author :
Turlapaty, Anish ; Yuanwei Jin
Author_Institution :
Dept. of Eng. & Aviation Sci., Univ. of Maryland Eastern Shore, Princess Anne, MD, USA
fYear :
2013
Firstpage :
6244
Lastpage :
6248
Abstract :
In this paper we develop a new framework for Bayesian parameter estimation using adaptive waveforms by the minimal free energy (FE) principle in the context of cognitive radar. Unlike conventional approaches, the new method utilizes the minimal FE principle as a unifying criterion for optimal estimator design and waveform design. The FE principle seeks to approximate the true density of the unknown parameters in response to sequential measurement data. In the case of a single unknown parameter we show that the estimators based on the FE principle and the conventional Bayesian estimator are identical. Moreover, the waveform design based on the FE principle results in similar water-filling solution as the traditional mutual information method.
Keywords :
Bayes methods; adaptive signal processing; parameter estimation; radar signal processing; Bayesian parameter estimation; FE principle; adaptive waveforms; cognitive radar; minimal free energy principle; minimal free-energy principle; optimal estimator design; sequential measurement data; water-filling solution; waveform design; Bayes methods; Density measurement; Estimation; Iron; Parameter estimation; Q measurement; Radar; Adaptive Waveform; Cognitive Radar; Free-Energy Principle; Machine Learning;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on
Conference_Location :
Vancouver, BC
ISSN :
1520-6149
Type :
conf
DOI :
10.1109/ICASSP.2013.6638866
Filename :
6638866
Link To Document :
بازگشت