Title :
Particle metropolis hastings using Langevin dynamics
Author :
Dahlin, Johan ; Lindsten, Fredrik ; Schon, Thomas
Author_Institution :
Div. of Autom. Control, Linkoping Univ., Linkoping, Sweden
Abstract :
Particle Markov Chain Monte Carlo (PMCMC) samplers allow for routine inference of parameters and states in challenging nonlinear problems. A common choice for the parameter proposal is a simple random walk sampler, which can scale poorly with the number of parameters. In this paper, we propose to use log-likelihood gradients, i.e. the score, in the construction of the proposal, akin to the Langevin Monte Carlo method, but adapted to the PMCMC framework. This can be thought of as a way to guide a random walk proposal by using drift terms that are proportional to the score function. The method is successfully applied to a stochastic volatility model and the drift term exhibits intuitive behaviour.
Keywords :
Markov processes; Monte Carlo methods; signal sampling; Langevin dynamics; PMCMC samplers; log-likelihood gradients; nonlinear problems; particle Markov hain Monte Carlo samplers; particle metropolis hastings; random walk sampler; routine inference; stochastic volatility; Hidden Markov models; Kernel; Markov processes; Monte Carlo methods; Proposals; Smoothing methods; State-space methods; Bayesian inference; Langevin Monte Carlo; Particle Markov Chain Monte Carlo; Sequential Monte Carlo;
Conference_Titel :
Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on
Conference_Location :
Vancouver, BC
DOI :
10.1109/ICASSP.2013.6638879