Title :
A Distance Geometric Framework for Nonlinear Hyperspectral Unmixing
Author :
Heylen, Rob ; Scheunders, Paul
Author_Institution :
Dept. of Phys., Univ. of Antwerp, Antwerp, Belgium
Abstract :
In this article, a distance geometry-based framework for hyperspectral image unmixing is presented. A manifold representation of the data set is generated by creation of a nearest-neighbor graph on which shortest paths are calculated yielding a geodesic distance matrix. Instead of unfolding the manifold in a lower-dimensional Euclidean space, it is proposed to work directly on the manifold. To do so, algorithms need to be rewritten in terms of distance geometry. Building further on earlier work, where distance-based dimensionality estimation and endmember extraction methods were presented, we will propose a distance geometric version of the actual unmixing (abundance estimation) step. In this way, a complete distance geometric unmixing framework is obtained that is efficient compared to the classical methods based on optimization. Furthermore, the distance geometry-adapted algorithms can be applied on nonlinear data manifolds by employing geodesic distances. In the experiments, we demonstrate this by comparing the obtained nonlinear framework to its linear counterpart.
Keywords :
geophysical image processing; hyperspectral imaging; remote sensing; distance geometry-adapted algorithms; distance geometry-based framework; distance-based dimensionality estimation; endmember extraction methods; geodesic distance matrix; geometric unmixing framework; hyperspectral image unmixing; lower-dimensional Euclidean space; nearest-neighbor graph; nonlinear hyperspectral unmixing; remote sensing; Estimation; Euclidean distance; Geometry; Hyperspectral imaging; Manifolds; Hyperspectral imaging; spectral analysis;
Journal_Title :
Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of
DOI :
10.1109/JSTARS.2014.2319894