DocumentCode :
1684615
Title :
Adjustable quantizers for joint estimation of location and scale parameters
Author :
Farias, Rodrigo Cabral ; Brossier, Jean-Marc
Author_Institution :
Images & Signal Dept., Univ. of Grenoble, St. Martin d´Hères, France
fYear :
2013
Firstpage :
6436
Lastpage :
6440
Abstract :
An adaptive algorithm to estimate jointly unknown location and scale parameters of a sequence of symmetrically distributed independent and identically distributed random variables using quantized measurements from a quantizer with adjustable input gain and input offset is presented. The asymptotic variance of estimation is obtained, simulations under Cauchy and Gaussian distributions are presented to validate the asymptotic results and they are compared to the continuous optimal estimator performance.
Keywords :
Gaussian distribution; adaptive signal processing; estimation theory; parameter estimation; quantisation (signal); random processes; Cauchy distribution; Gaussian distribution; adaptive algorithm; adjustable input gain; adjustable input offset; adjustable quantizer; asymptotic estimation variance; identically distributed random variable; jointly unknown location parameter estimation; measurement quantization; scale parameter estimation; symmetrically distributed independent variable; Adaptive algorithms; Estimation; Gain measurement; Nickel; Noise; Noise measurement; Quantization (signal); Parameter estimation; adaptive algorithm; quantization;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on
Conference_Location :
Vancouver, BC
ISSN :
1520-6149
Type :
conf
DOI :
10.1109/ICASSP.2013.6638905
Filename :
6638905
Link To Document :
بازگشت