• DocumentCode
    1685773
  • Title

    Analysis of fisher information and the Cramer-Rao bound for nonlinear parameter estimation after compressed sensing

  • Author

    Pakrooh, Pooria ; Scharf, Louis L. ; Pezeshki, Ali ; Yuejie Chi

  • Author_Institution
    ECE Dept., Colorado State Univ., Fort Collins, CO, USA
  • fYear
    2013
  • Firstpage
    6630
  • Lastpage
    6634
  • Abstract
    In this paper, we analyze the impact of compressed sensing with random matrices on Fisher information and the CRB for estimating unknown parameters in the mean value function of a multivariate normal distribution. We consider the class of random compression matrices that satisfy a version of the Johnson-Lindenstrauss lemma, and we derive analytical lower and upper bounds on the CRB for estimating parameters from randomly compressed data. These bounds quantify the potential loss in CRB as a function of Fisher information of the non-compressed data. In our numerical examples, we consider a direction of arrival estimation problem and compare the actual loss in CRB with our bounds.
  • Keywords
    compressed sensing; direction-of-arrival estimation; normal distribution; Cramer Rao bound; Johnson Lindenstrauss lemma; compressed sensing; direction of arrival estimation problem; fisher information; mean value function; multivariate normal distribution; nonlinear parameter estimation; random matrices; randomly compressed data; unknown parameters estimation; Compressed sensing; Covariance matrices; Cramer-Rao bounds; Sensitivity; Upper bound; Vectors; Cramer-Rao bound; Fisher information; Johnson-Lindenstrauss Lemma; compressed sensing; parameter estimation;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on
  • Conference_Location
    Vancouver, BC
  • ISSN
    1520-6149
  • Type

    conf

  • DOI
    10.1109/ICASSP.2013.6638944
  • Filename
    6638944