DocumentCode
1685773
Title
Analysis of fisher information and the Cramer-Rao bound for nonlinear parameter estimation after compressed sensing
Author
Pakrooh, Pooria ; Scharf, Louis L. ; Pezeshki, Ali ; Yuejie Chi
Author_Institution
ECE Dept., Colorado State Univ., Fort Collins, CO, USA
fYear
2013
Firstpage
6630
Lastpage
6634
Abstract
In this paper, we analyze the impact of compressed sensing with random matrices on Fisher information and the CRB for estimating unknown parameters in the mean value function of a multivariate normal distribution. We consider the class of random compression matrices that satisfy a version of the Johnson-Lindenstrauss lemma, and we derive analytical lower and upper bounds on the CRB for estimating parameters from randomly compressed data. These bounds quantify the potential loss in CRB as a function of Fisher information of the non-compressed data. In our numerical examples, we consider a direction of arrival estimation problem and compare the actual loss in CRB with our bounds.
Keywords
compressed sensing; direction-of-arrival estimation; normal distribution; Cramer Rao bound; Johnson Lindenstrauss lemma; compressed sensing; direction of arrival estimation problem; fisher information; mean value function; multivariate normal distribution; nonlinear parameter estimation; random matrices; randomly compressed data; unknown parameters estimation; Compressed sensing; Covariance matrices; Cramer-Rao bounds; Sensitivity; Upper bound; Vectors; Cramer-Rao bound; Fisher information; Johnson-Lindenstrauss Lemma; compressed sensing; parameter estimation;
fLanguage
English
Publisher
ieee
Conference_Titel
Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on
Conference_Location
Vancouver, BC
ISSN
1520-6149
Type
conf
DOI
10.1109/ICASSP.2013.6638944
Filename
6638944
Link To Document