DocumentCode :
1685773
Title :
Analysis of fisher information and the Cramer-Rao bound for nonlinear parameter estimation after compressed sensing
Author :
Pakrooh, Pooria ; Scharf, Louis L. ; Pezeshki, Ali ; Yuejie Chi
Author_Institution :
ECE Dept., Colorado State Univ., Fort Collins, CO, USA
fYear :
2013
Firstpage :
6630
Lastpage :
6634
Abstract :
In this paper, we analyze the impact of compressed sensing with random matrices on Fisher information and the CRB for estimating unknown parameters in the mean value function of a multivariate normal distribution. We consider the class of random compression matrices that satisfy a version of the Johnson-Lindenstrauss lemma, and we derive analytical lower and upper bounds on the CRB for estimating parameters from randomly compressed data. These bounds quantify the potential loss in CRB as a function of Fisher information of the non-compressed data. In our numerical examples, we consider a direction of arrival estimation problem and compare the actual loss in CRB with our bounds.
Keywords :
compressed sensing; direction-of-arrival estimation; normal distribution; Cramer Rao bound; Johnson Lindenstrauss lemma; compressed sensing; direction of arrival estimation problem; fisher information; mean value function; multivariate normal distribution; nonlinear parameter estimation; random matrices; randomly compressed data; unknown parameters estimation; Compressed sensing; Covariance matrices; Cramer-Rao bounds; Sensitivity; Upper bound; Vectors; Cramer-Rao bound; Fisher information; Johnson-Lindenstrauss Lemma; compressed sensing; parameter estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on
Conference_Location :
Vancouver, BC
ISSN :
1520-6149
Type :
conf
DOI :
10.1109/ICASSP.2013.6638944
Filename :
6638944
Link To Document :
بازگشت