DocumentCode :
1688999
Title :
Indexing and incremental updating condensed data cube
Author :
Feng, Jianlin ; Si, Hongjie ; Feng, Yucai
Author_Institution :
Sch. of Comput. Sci., Huazhong Univ. of Sci. & Technol., Wuhan, China
fYear :
2003
Firstpage :
23
Lastpage :
32
Abstract :
OLAP (online analytical processing) servers usually pre-compute data cubes to improve the response time of possible aggregate queries over cuboids with different grouping attributes. To reduce the huge size of a sparse data cube, the base single tuples (BSTs) are explored to condense cube tuples aggregated from the same set of source tuples into one tuple, whenever such condensing will not require further aggregate when the cube is used to answer queries. We propose the CuboidTree to index the BST condensed cube. Using both synthetic and real world data, we conducted experiments to demonstrate query processing and bulk incremental updating performance of the indexing scheme.
Keywords :
data mining; database indexing; meta data; query processing; OLAP; base single tuple; condensed data; data analysis; data cube; information analysis; information indexing; information retrieval; meta data; online analytical processing; query language; query processing; response time; Aggregates; Binary search trees; Computer science; Data analysis; Delay; Indexing; Marketing and sales; Multidimensional systems; Physics computing; Query processing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Scientific and Statistical Database Management, 2003. 15th International Conference on
ISSN :
1099-3371
Print_ISBN :
0-7695-1964-4
Type :
conf
DOI :
10.1109/SSDM.2003.1214949
Filename :
1214949
Link To Document :
بازگشت