DocumentCode :
1689934
Title :
A new scheme of fault detection based on neural nets
Author :
Luo, Jian ; Yang, Quan-Fa
Author_Institution :
Dept. of Automatic Control, Northwestern Polytech. Univ., Xi´´an, China
fYear :
1992
Firstpage :
580
Abstract :
This paper presents a new scheme for fault detection based on neural nets. By using a Hopfield neural network for online parameter estimation, process faults caused by parameter changes can be detected. Because of the use of a neural computing technique, the scheme improves the performance of fault diagnosis approaches based on traditional parameter estimation methods with respect to detection speed, accuracy and the ability of realtime processing. Simulation results show that the scheme has good efficacy in fault detection and is especially suitable for detecting faults caused by parameter changes
Keywords :
Hopfield neural nets; fault location; parameter estimation; process computer control; real-time systems; Hopfield neural network; fault detection; fault location; neural nets; online parameter estimation; parameter variations; performance; process computer control; realtime; Automatic control; Computer networks; Fault detection; Fault diagnosis; Hopfield neural networks; Neural networks; Neurons; Parameter estimation; Physics computing; Real time systems;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Industrial Electronics, 1992., Proceedings of the IEEE International Symposium on
Conference_Location :
Xian
Print_ISBN :
0-7803-0042-4
Type :
conf
DOI :
10.1109/ISIE.1992.279667
Filename :
279667
Link To Document :
بازگشت