DocumentCode :
1692311
Title :
Evolutionary programming in image restoration via reduced order model Kalman filtering
Author :
de Freitas Zampolo, R. ; Seara, Rui ; Tobias, Orlando J.
Author_Institution :
Dept. of Electr. Eng., Univ. Fed. de Santa Catarina, Florianopolis, Brazil
Volume :
1
fYear :
2001
fDate :
6/23/1905 12:00:00 AM
Firstpage :
221
Abstract :
The image restoration via reduced order model Kalman filter (ROMKF) is accomplished in conjunction with a maximum likelihood technique for image/blur parameter estimation purposes. Traditionally, one uses initial condition sensitive optimization algorithms at the estimation stage. This work concerns the use of evolutionary programming (EP) in the parameter estimation phase of the ROMKF space-adaptive image restoration. Experimental comparisons between both of the mentioned optimization strategies are presented. Simulation results suggest that more reliable ROMKF restorations are obtained when less initial condition sensitive algorithms are adopted
Keywords :
Kalman filters; evolutionary computation; filtering theory; image restoration; maximum likelihood estimation; evolutionary programming; image restoration; imagelblur parameter estimation; initial condition sensitive optimization algorithms; mathematical models; maximum likelihood estimation; point spread function; reduced order model Kalman filtering; simulation results; space-adaptive image restoration; Degradation; Filtering; Genetic programming; Image restoration; Kalman filters; Mathematical model; Maximum likelihood estimation; Parameter estimation; Reduced order systems; Signal processing algorithms;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Processing, 2001. Proceedings. 2001 International Conference on
Conference_Location :
Thessaloniki
Print_ISBN :
0-7803-6725-1
Type :
conf
DOI :
10.1109/ICIP.2001.958993
Filename :
958993
Link To Document :
بازگشت