DocumentCode
169233
Title
Message variance convergence condition for generalizations of LDLC lattices
Author
Kurkoski, Brian M. ; Hernandez, Ricardo Antonio Parrao
Author_Institution
Japan Adv. Inst. of Sci. & Technol., Nomi, Japan
fYear
2014
fDate
2-5 Nov. 2014
Firstpage
20
Lastpage
24
Abstract
For low-density lattice codes (LDLC), there is a condition for convergence of the messages under belief-propagation decoding, specifically a condition on the inverse generator matrix for the variances in the Gaussian mixture to converge. It offers guidance on the design of Latin square LDLC lattices. This paper revisits this condition, and then describes two other constructions, a modified Latin square construction and a triangular array code construction. We illustrate how the condition can be applied, demonstrating the validity of the condition for more general LDLC lattices.
Keywords
Gaussian processes; convergence; decoding; matrix inversion; mixture models; parity check codes; Gaussian mixture; Latin square LDLC lattices; belief-propagation decoding; inverse generator matrix; low-density lattice codes; message variance convergence; modified Latin square construction; triangular array code construction; AWGN channels; Arrays; Convergence; Decoding; Generators; Lattices; Sparse matrices;
fLanguage
English
Publisher
ieee
Conference_Titel
Information Theory Workshop (ITW), 2014 IEEE
Conference_Location
Hobart, TAS
ISSN
1662-9019
Type
conf
DOI
10.1109/ITW.2014.6970784
Filename
6970784
Link To Document