• DocumentCode
    169233
  • Title

    Message variance convergence condition for generalizations of LDLC lattices

  • Author

    Kurkoski, Brian M. ; Hernandez, Ricardo Antonio Parrao

  • Author_Institution
    Japan Adv. Inst. of Sci. & Technol., Nomi, Japan
  • fYear
    2014
  • fDate
    2-5 Nov. 2014
  • Firstpage
    20
  • Lastpage
    24
  • Abstract
    For low-density lattice codes (LDLC), there is a condition for convergence of the messages under belief-propagation decoding, specifically a condition on the inverse generator matrix for the variances in the Gaussian mixture to converge. It offers guidance on the design of Latin square LDLC lattices. This paper revisits this condition, and then describes two other constructions, a modified Latin square construction and a triangular array code construction. We illustrate how the condition can be applied, demonstrating the validity of the condition for more general LDLC lattices.
  • Keywords
    Gaussian processes; convergence; decoding; matrix inversion; mixture models; parity check codes; Gaussian mixture; Latin square LDLC lattices; belief-propagation decoding; inverse generator matrix; low-density lattice codes; message variance convergence; modified Latin square construction; triangular array code construction; AWGN channels; Arrays; Convergence; Decoding; Generators; Lattices; Sparse matrices;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Information Theory Workshop (ITW), 2014 IEEE
  • Conference_Location
    Hobart, TAS
  • ISSN
    1662-9019
  • Type

    conf

  • DOI
    10.1109/ITW.2014.6970784
  • Filename
    6970784