DocumentCode :
1693151
Title :
Data Mining for Electrical Load Forecasting In Egyptian Electrical Network
Author :
Mohamed, Hoda K. ; El-Debeiky, Soliman M. ; Mahmoud, Hassan M. ; El Destawy, Khaled M.
Author_Institution :
Dept. of Comput. & Syst. Eng., Ain Shams Univ., Cairo
fYear :
2006
Firstpage :
460
Lastpage :
465
Abstract :
The paper presents the design of a model for forecasting long-term electricity load. The model uses data mining techniques. The paper defines the load forecast and the summary of the most important factors affecting the load forecast in Egyptian electricity network. The steps needed for the knowledge discovery process is implemented to the time series data. Preprocessing the data in order to detect the missing value, odd value, outliers and normalize data. The output from the preprocessing step is fed into multiple regression or neural network to predict the coefficient parameters. Comparison between different cases using different techniques is indicated
Keywords :
data mining; load forecasting; neural nets; power engineering computing; regression analysis; time series; Egyptian electrical network; data mining; knowledge discovery; long-term electrical load forecasting; multiple regression; neural network; time series data; Clustering algorithms; Data mining; Energy consumption; Load forecasting; Load modeling; Neural networks; Power demand; Power system modeling; Power system reliability; Predictive models; data mining techniques; electrical load forecasting; multiple regression; neural network;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Engineering and Systems, The 2006 International Conference on
Conference_Location :
Cairo
Print_ISBN :
1-4244-0271-9
Electronic_ISBN :
1-4244-0272-7
Type :
conf
DOI :
10.1109/ICCES.2006.320491
Filename :
4115551
Link To Document :
بازگشت