• DocumentCode
    1696124
  • Title

    Nonsmoothness and nonconvexity in calculus of variations and optimal control

  • Author

    Ioffe, Alexander

  • Author_Institution
    Dept. of Math., Technion-Israel Inst. of Technol., Haifa, Israel
  • Volume
    4
  • fYear
    1994
  • Firstpage
    3986
  • Abstract
    We discuss a number of questions relating to the modern theory of necessary conditions in optimal control: Is the Euler-Lagrange inclusion necessary for a weak minimum? In case of nonconvex dependence, does there exist an adjoint arc satisfying jointly the Euler-Lagrange inclusion and the Weierstrass-type condition? Is the maximum principle, jointly with either Euler-Lagrange or Hamiltonian adjoint inclusions, necessary for a strong local minimum? What kind of relationship exists between solutions of Hamiltonian and Euler-Lagrange adjoint inclusions? and, Find an alternative proof of Clarke´s Hamiltonian maximum principle for the Mayer problem, with convex-valued inclusion
  • Keywords
    optimal control; variational techniques; Euler-Lagrange inclusion; Hamiltonian adjoint inclusions; Mayer problem; Weierstrass-type condition; adjoint arc; convex-valued inclusion; maximum principle; nonconvex dependence; nonconvexity; nonsmoothness; optimal control; strong local minimum; variational calculus; weak minimum; Calculus; Cost function; Mathematics; Optimal control;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Decision and Control, 1994., Proceedings of the 33rd IEEE Conference on
  • Conference_Location
    Lake Buena Vista, FL
  • Print_ISBN
    0-7803-1968-0
  • Type

    conf

  • DOI
    10.1109/CDC.1994.411567
  • Filename
    411567