DocumentCode :
1696124
Title :
Nonsmoothness and nonconvexity in calculus of variations and optimal control
Author :
Ioffe, Alexander
Author_Institution :
Dept. of Math., Technion-Israel Inst. of Technol., Haifa, Israel
Volume :
4
fYear :
1994
Firstpage :
3986
Abstract :
We discuss a number of questions relating to the modern theory of necessary conditions in optimal control: Is the Euler-Lagrange inclusion necessary for a weak minimum? In case of nonconvex dependence, does there exist an adjoint arc satisfying jointly the Euler-Lagrange inclusion and the Weierstrass-type condition? Is the maximum principle, jointly with either Euler-Lagrange or Hamiltonian adjoint inclusions, necessary for a strong local minimum? What kind of relationship exists between solutions of Hamiltonian and Euler-Lagrange adjoint inclusions? and, Find an alternative proof of Clarke´s Hamiltonian maximum principle for the Mayer problem, with convex-valued inclusion
Keywords :
optimal control; variational techniques; Euler-Lagrange inclusion; Hamiltonian adjoint inclusions; Mayer problem; Weierstrass-type condition; adjoint arc; convex-valued inclusion; maximum principle; nonconvex dependence; nonconvexity; nonsmoothness; optimal control; strong local minimum; variational calculus; weak minimum; Calculus; Cost function; Mathematics; Optimal control;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 1994., Proceedings of the 33rd IEEE Conference on
Conference_Location :
Lake Buena Vista, FL
Print_ISBN :
0-7803-1968-0
Type :
conf
DOI :
10.1109/CDC.1994.411567
Filename :
411567
Link To Document :
بازگشت