Title :
Pairwise Threshold for Gaussian Mixture Classification and Its Application on Human Tracking Enhancement
Author :
Kim, Daegeon ; Lee, Sung Chun
Author_Institution :
Inst. for Robot. & Intell. Syst., Univ. of Southern California, Los Angeles, CA, USA
Abstract :
In this paper, we describe Object Pixel Mixture Classifiers (OPMCs) which classify an object not only apart from background but also from other objects based on Gaussian Mixture Model (GMM) classification. The proposed OPMC is different from general GMM based classifiers in the respect that novel pairwise threshold is applied for final classification. Pairwise thresholds are different thresholds depending on predicted mixture component index combination by a positive and a negative GMMs. We train the pairwise threshold using discriminative model so that generative GMM can take advantage from it. We demonstrate that OPMCs are robust to noise in train data and can keep tracking objects after missing tracks even with occlusion. Also, we show that OPMCs can generate meaningful blob of object, and can separate the region of objects from merged blobs.
Keywords :
Gaussian processes; image classification; image enhancement; object tracking; GMM based classifiers; GMM classification; Gaussian mixture model classification; OPMC; discriminative model; human tracking enhancement; mixture component index combination; object classification; object pixel mixture classifiers; object tracking; pairwise threshold; Conferences; Feature extraction; Humans; Image color analysis; Indexes; Noise; Gaussian Mixture Classification; Human Tracking; Pairwise Threshold;
Conference_Titel :
Advanced Video and Signal-Based Surveillance (AVSS), 2012 IEEE Ninth International Conference on
Conference_Location :
Beijing
Print_ISBN :
978-1-4673-2499-1
DOI :
10.1109/AVSS.2012.53