DocumentCode :
1704970
Title :
Adaptive interactive device control by using reinforcement learning in ambient information environment
Author :
Nakase, Junya ; Moriyama, Koichi ; Kiyokawa, Kiyoshi ; Numao, Masayuki ; Oyama, Masashi ; Kurihara, Satoshi
Author_Institution :
Grad. Sch. of Inf. Sci. & Technol., Osaka Univ., Suita, Japan
fYear :
2012
Firstpage :
1
Lastpage :
4
Abstract :
In ambient information systems, not only extracting human behavior by sensor network but also adaptive autonomous interaction between the environment and humans is an important function. In this paper we propose a reinforcement learning framework to extract suitable interaction for each person from daily behavior. In the experiment, we show the feasibility of the proposed methodology.
Keywords :
adaptive systems; interactive devices; learning (artificial intelligence); adaptive autonomous interaction; adaptive interactive device control; ambient information system; human behavior extraction; reinforcement learning; sensor network; ambient information system; interaction sequence; profit-sharing; reinforcement learning;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Virtual Reality Short Papers and Posters (VRW), 2012 IEEE
Conference_Location :
Costa Mesa, CA
ISSN :
1087-8270
Print_ISBN :
978-1-4673-1247-9
Type :
conf
DOI :
10.1109/VR.2012.6180848
Filename :
6180848
Link To Document :
بازگشت