DocumentCode :
1706105
Title :
Bayesian inference in linear models with a random Gaussian matrix : Algorithms and complexity
Author :
Nevat, Ido ; Peters, Gareth W. ; Yuan, Jinhong
Author_Institution :
Sch. of Electr. Eng. & Telecommun., Univ. of NSW, Sydney, NSW
fYear :
2008
Firstpage :
1
Lastpage :
6
Abstract :
We consider the Bayesian inference of a random Gaussian vector in a linear model with a random Gaussian matrix. We review two approaches to finding the MAP estimator for this model. We propose improved versions of these approaches with reduced complexity. Next we analyze their complexity and convergence properties. Then we derive the MAP estimator in the setting in which the variance of the noise is unknown. Simulation results presented compare the performance in terms of estimation error of the approaches.
Keywords :
Bayes methods; Gaussian processes; convergence; matrix algebra; maximum likelihood estimation; random processes; Bayesian inference method; MAP estimation; convergence property; error estimation; linear model; maximum a-posteriori estimator; random Gaussian matrix; Australia; Bayesian methods; Convergence; Estimation error; Inference algorithms; Mathematical model; Mathematics; Signal processing algorithms; Statistics; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Personal, Indoor and Mobile Radio Communications, 2008. PIMRC 2008. IEEE 19th International Symposium on
Conference_Location :
Cannes
Print_ISBN :
978-1-4244-2643-0
Electronic_ISBN :
978-1-4244-2644-7
Type :
conf
DOI :
10.1109/PIMRC.2008.4699427
Filename :
4699427
Link To Document :
بازگشت