DocumentCode :
1706469
Title :
Robust adaptive finite-time parameter estimation for linearly parameterized nonlinear systems
Author :
Jing Na ; Mahyuddin, Muhammad Nasiruddin ; Herrmann, Guido ; Xuemei Ren
Author_Institution :
Fac. of Mech. & Electr. Eng., Kunming Univ. of Sci. & Technol., Kunming, China
fYear :
2013
Firstpage :
1735
Lastpage :
1741
Abstract :
This paper studies a novel adaptive parameter estimation framework for linearly parameterized nonlinear systems. Appropriate parameter error information is derived by defining auxiliary filtered variables and used to drive the parameter adaptation, which guarantees exponential error convergence. The proposed method is further improved via a sliding mode approach to achieve finite-time (FT) error convergence. The case with bounded disturbances or noises is also studied. The parameter estimation is obtained without using the state derivatives and is independent of observer/predictor design. The online computation of the regressor matrix inverse can be avoided. Simulation examples are included to illustrate the effectiveness.
Keywords :
adaptive control; convergence; inverse problems; linearisation techniques; matrix algebra; nonlinear systems; parameter estimation; regression analysis; robust control; variable structure systems; auxiliary filtered variables; bounded disturbances; exponential error convergence guarantee; finite-time error convergence; linearly parameterized nonlinear systems; observer design; parameter adaptation; parameter error information; predictor design; regressor matrix inverse; robust adaptive finite-time parameter estimation; sliding mode approach; state derivatives; Adaptive systems; Convergence; Nonlinear systems; Observers; Parameter estimation; Vectors; Adaptive system; Finite time convergence; Parameter estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Control Conference (CCC), 2013 32nd Chinese
Conference_Location :
Xi´an
Type :
conf
Filename :
6639707
Link To Document :
بازگشت