DocumentCode :
1710087
Title :
Optimal risk-sensitive control for bilinear stochastic systems
Author :
Alcorta, Ma G Aracelia ; Basin, Michael V. ; Anguiano R, Sonia G
Author_Institution :
Dept. of Phys. & Math. Sci., Autonomous Univ. of Nuevo Leon, Nuevo Leon, Mexico
fYear :
2009
Firstpage :
274
Lastpage :
278
Abstract :
The optimal exponential-quadratic control problem is considered for stochastic Gaussian systems with polynomial bilinear drift terms and intensity parameters multiplying diffusion terms in the state equation. The closed-form optimal control algorithm is obtained using a quadratic value function as a solution to the corresponding Hamilton-Jacobi-Bellman equation. The performance of the obtained risk-sensitive regulator for stochastic bilinear polynomial systems is verified in a numerical example, through comparing the exponential quadratic criteria values for the optimal risk-sensitive control and bilinear control algorithms. The simulation results reveal strong advantages in favor of the designed risk-sensitive algorithm in regard to the final criteria values for all values of the parameter epsiv.
Keywords :
Gaussian processes; bilinear systems; optimal control; polynomials; risk analysis; stochastic systems; Hamilton-Jacobi-Bellman equation; bilinear control algorithms; bilinear stochastic polynomial systems; closed-form optimal control algorithm; exponential quadratic criteria values; intensity parameters multiplying diffusion terms; optimal exponential-quadratic control problem; optimal risk-sensitive control; polynomial bilinear drift terms; quadratic value function; state equation; stochastic Gaussian systems; Algorithm design and analysis; Control systems; Differential equations; Dynamic programming; Noise level; Nonlinear systems; Optimal control; Polynomials; Regulators; Stochastic systems;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Control Applications, (CCA) & Intelligent Control, (ISIC), 2009 IEEE
Conference_Location :
St. Petersburg
Print_ISBN :
978-1-4244-4601-8
Electronic_ISBN :
978-1-4244-4602-5
Type :
conf
DOI :
10.1109/CCA.2009.5281120
Filename :
5281120
Link To Document :
بازگشت