Title :
Minimum queue length load-balancing in planned Wireless Mesh Networks
Author :
Capdehourat, Germán ; Larroca, Federico ; Belzarena, Pablo
Author_Institution :
Inst. de Ing. Electr., Univ. de la Republica, Montevideo, Uruguay
Abstract :
Wireless Mesh Networks (WMNS) have emerged in the last years as a cost-efficient alternative to traditional wired access networks. In order to fully exploit the intrinsically scarce resources WMNS possess, the use of dynamic routing has been proposed. We argue instead in favour of separating routing from forwarding (i.e. à la MPLS) and implementing a dynamic load-balancing scheme that forwards incoming packets along several pre-established paths in order to minimize a certain congestion function. In this paper, we consider a particular but very important scenario: a planned WMN where all bidirectional point-to-point links do not interfere with each other. Due to its versatility and simplicity, we use the sum over all links of the mean queue length as congestion function. A method to learn this function from measurements is presented, whereas simulations illustrate the framework.
Keywords :
telecommunication network planning; telecommunication network routing; wireless mesh networks; MPLS; bidirectional point-to-point links; dynamic load-balancing scheme; dynamic routing; minimum queue length load-balancing; planned WMN; planned wireless mesh networks; IEEE 802.11 Standards; Load modeling; Logic gates; Optimization; Queueing analysis; Routing; Wireless communication;
Conference_Titel :
Wireless Communication Systems (ISWCS), 2012 International Symposium on
Conference_Location :
Paris
Print_ISBN :
978-1-4673-0761-1
Electronic_ISBN :
2154-0217
DOI :
10.1109/ISWCS.2012.6328474