Title :
Sparse channel estimation for OFDM-based underwater cooperative systems with amplify-and-forward relaying
Author :
Senol, H. ; Panayirci, Erdal ; Uysal, Mustafa
Author_Institution :
Dept. of Electr.-Electron. Eng., Kadir Has Univ., Istanbul, Turkey
Abstract :
This paper is concerned with a challenging problem of channel estimation for amplify-and-forward cooperative relay based orthogonal frequency division multiplexing (OFDM) systems in the presence of sparse underwater acoustic channels and of the correlative non-Gaussian noise. We exploit the sparse structure of the channel impulse response to improve the performance of the channel estimation algorithm, due to the reduced number of taps to be estimated. The resulting novel algorithm initially estimates the overall sparse channel taps from the source to the destination as well as their locations using the matching pursuit (MP) approach. The correlated non-Gaussian effective noise is modeled as a Gaussian mixture. Based on the Gaussian mixture model, an efficient and low complexity algorithm is developed based on the combinations of the MP and the space-alternating generalized expectation-maximization (SAGE) technique, to improve the estimates of the channel taps and their location as well as the noise distribution parameters in an iterative way. The proposed SAGE algorithm is designed in such a way that, by choosing the admissible hidden data properly on which the SAGE algorithm relies, a subset of parameters is updated for analytical tractability and the remaining parameters for faster convergence Computer simulations show that underwater acoustic (UWA) channel is estimated very effectively and the proposed algorithm has excellent symbol error rate and channel estimation performance.
Keywords :
Gaussian noise; Gaussian processes; OFDM modulation; amplify and forward communication; channel estimation; cooperative communication; expectation-maximisation algorithm; iterative methods; mixture models; relay networks (telecommunication); time-frequency analysis; underwater acoustic communication; Gaussian mixture model; MP approach; OFDM-based underwater cooperative system; SAGE technique; UWA channel; admissible hidden data; amplify-and-forward cooperative relay; analytical tractability; channel impulse response; convergence; correlative nonGaussian effective noise; low complexity algorithm; matching pursuit approach; noise distribution parameter; orthogonal frequency division multiplexing; space-alternating generalized expectation-maximization; sparse channel estimation; sparse channel tap; sparse underwater acoustic channel; symbol error rate; Channel estimation; Matching pursuit algorithms; Noise; OFDM; Relays; Underwater acoustics; Vectors;
Conference_Titel :
Communications and Networking (BlackSeaCom), 2014 IEEE International Black Sea Conference on
Conference_Location :
Odessa
DOI :
10.1109/BlackSeaCom.2014.6848994