• DocumentCode
    17207
  • Title

    A Regularized Estimator For Linear Regression Model With Possibly Singular Covariance

  • Author

    Hoang, Hong Son ; Baraille, Rémy

  • Author_Institution
    SHOM/HOM, Toulouse, France
  • Volume
    58
  • Issue
    1
  • fYear
    2013
  • fDate
    Jan. 2013
  • Firstpage
    236
  • Lastpage
    241
  • Abstract
    A regularized estimator is proposed for regression models in the case where the covariances may be singular. Conditions guaranteeing proximity of a regularized estimator to the optimal estimator are obtained by appropriate choice of regularization parameters by allowing a prescribed level of uncertainty. A simple Monte-Carlo simulation study is reported to highlight some aspects and performance of the proposed approach.
  • Keywords
    Monte Carlo methods; covariance matrices; regression analysis; Monte-Carlo simulation; linear regression model; optimal estimator; regularized estimator; singular covariance; Convergence; Eigenvalues and eigenfunctions; Estimation error; Mathematical model; Stability analysis; Vectors; Covariance matrix; LMS algorithm; linear regression system; parameter estimation; regularization;
  • fLanguage
    English
  • Journal_Title
    Automatic Control, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9286
  • Type

    jour

  • DOI
    10.1109/TAC.2012.2203552
  • Filename
    6213506