DocumentCode :
1720723
Title :
Using statistical parameters for chaos detection
Author :
Vibe-Rheymer, Karin ; Vesin, Jean-Marc
Author_Institution :
Signal Process. Lab., Swiss Federal Inst. of Technol., Lausanne, Switzerland
fYear :
1996
Firstpage :
510
Lastpage :
513
Abstract :
Detecting chaos in experimental data is a nontrivial problem. Nowadays, most techniques require long data sets and a low amount of noise in the data, which is not always possible. Besides, the results often leave much room to interpretation. The paper proposes an alternative to classical methods, using statistical techniques. The chaos detection test is decomposed into two sub-tests, detecting respectively the presence of fractality and nonlinearity in the signal. Several possible tests for each feature are presented and analyzed; the best combination test is then proposed
Keywords :
chaos; fractals; parameter estimation; statistical analysis; chaos detection; chaos detection test; combination test; experimental data; long data sets; noise; nontrivial problem; signal fractality detection; signal nonlinearity detection; statistical parameters; statistical techniques; subtests; Chaos; Conferences; Displays; Fractals; Gaussian noise; Laboratories; Root mean square; Signal processing; Testing; White noise;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Digital Signal Processing Workshop Proceedings, 1996., IEEE
Conference_Location :
Loen
Print_ISBN :
0-7803-3629-1
Type :
conf
DOI :
10.1109/DSPWS.1996.555574
Filename :
555574
Link To Document :
بازگشت