DocumentCode :
1721143
Title :
On recursive decoding with sublinear complexity for Reed-Muller codes
Author :
Dumer, Ilya
Author_Institution :
California Univ., Riverside, CA, USA
fYear :
2003
Firstpage :
14
Lastpage :
17
Abstract :
Reed-Muller (RM) codes (m, r) of length 2m are considered on a binary symmetric (BS) channel with high crossover error probability 1/2 -ε. For an arbitrarily small ε>0, new recursive decoding algorithms are designed that retrieve all information bits of RM codes of fixed order r with a vanishing error probability and sublinear complexity of order O(mr+1). The algorithms utilize a vanishing fraction of the received symbols for both hard- and soft-decision decoding.
Keywords :
Reed-Muller codes; computational complexity; decoding; error statistics; Reed-Muller codes; binary symmetric channel; crossover error probability; hard-decision decoding; recursive decoding; soft-decision decoding; sublinear complexity; Algorithm design and analysis; Decoding; Ear; Encoding; Error probability; Information retrieval;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory Workshop, 2003. Proceedings. 2003 IEEE
Print_ISBN :
0-7803-7799-0
Type :
conf
DOI :
10.1109/ITW.2003.1216683
Filename :
1216683
Link To Document :
بازگشت