Title :
Human-like gradual multi-agent Q-learning using the concept of behavior-based robotics for autonomous exploration
Author :
Ray, Dip N. ; Mandal, Amit ; Majumder, Somajyoti ; Mukhopadhyay, Sumit
Author_Institution :
Surface Robot. Lab., Central Mech. Eng. Res. Inst. (CSIR), Durgapur, India
Abstract :
In the last few years, the field of mobile robotics has made lots of advancements. These advancements are due to the extensive application of mobile robots for autonomous exploration. Mobile robots are being popularly used for applications in space, underwater explorations, underground coal mines monitoring, inspection in chemical/toxic/ nuclear factories etc. But if these environments are unknown/unpredictable, conventional/ classical robotics may not serve the purpose. In such cases robot learning is the best option. Learning from the past experiences, is one such way for real time application of robots for completely unknown environments. Reinforcement learning is one of the best learning methods for robots using a constant system-environment interaction. Both single and multi-agent concepts are available for implementation of learning. The current research work describes a multi-agent based reinforcement learning using the concept of behaviour-based robotics for autonomous exploration of mobile robots. The concept has also been tested both in indoor and outdoor environments using real-time robots.
Keywords :
intelligent robots; learning (artificial intelligence); mobile robots; multi-agent systems; autonomous exploration; behavior-based robotics; constant system-environment interaction; human-like gradual multiagent Q-learning; mobile robotics; reinforcement learning; robot learning; Learning; Mobile robots; Multiagent systems; Robot kinematics; Robot sensing systems;
Conference_Titel :
Robotics and Biomimetics (ROBIO), 2011 IEEE International Conference on
Conference_Location :
Karon Beach, Phuket
Print_ISBN :
978-1-4577-2136-6
DOI :
10.1109/ROBIO.2011.6181717