DocumentCode :
1728109
Title :
A Modified Genetic Algorithm for Parameter Estimation of Software Reliability Growth Models
Author :
Hsu, Chao-Jung ; Huang, Chin-Yu ; Chen, Tsan-Yuan
Author_Institution :
Dept. of Comput. Sci., Nat. Tsing Hua Univ., Hsinchu
fYear :
2008
Firstpage :
281
Lastpage :
282
Abstract :
In this paper, we propose a modified genetic algorithm (MGA) with calibrating fitness functions, weighted bit mutation, and rebuilding mechanism for the parameter estimation of software reliability growth models (SRGMs). An example using a real failure data is given to demonstrate the performance of proposed method. Experimental result shows that MGA is effective for estimating the parameters of SRGM.
Keywords :
genetic algorithms; parameter estimation; software reliability; fitness function calibration; modified genetic algorithm; parameter estimation; software reliability growth models; weighted bit mutation; Biological cells; Genetic algorithms; Genetic engineering; Genetic mutations; Least squares approximation; Maximum likelihood estimation; Parameter estimation; Reliability engineering; Software reliability; Wheels; modified genetic algorithm; parameter estimation; software reliability growth model;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Software Reliability Engineering, 2008. ISSRE 2008. 19th International Symposium on
Conference_Location :
Seattle, WA
ISSN :
1071-9458
Print_ISBN :
978-0-7695-3405-3
Electronic_ISBN :
1071-9458
Type :
conf
DOI :
10.1109/ISSRE.2008.35
Filename :
4700336
Link To Document :
بازگشت