• DocumentCode
    1728683
  • Title

    A transform approach for constructing quasi-cyclic Euclidean geometry LDPC codes

  • Author

    Diao, Qiuju ; Zhou, Wei ; Lin, Shu ; Abdel-Ghaffar, Khaled

  • Author_Institution
    Dept. of Electr. & Comput. Eng., Univ. of California, Davis, CA, USA
  • fYear
    2012
  • Firstpage
    204
  • Lastpage
    211
  • Abstract
    A method for constructing quasi-cyclic Euclidean geometry (QC-EG) LDPC codes in the Fourier transform domain is presented. Given a Euclidean geometry over a finite field of characteristic 2, base matrices in the Fourier transform domain are first constructed. Then the inverse Fourier transforms of these base matrices, combined with row and column permutations, result in low-density arrays of circulant permutation matrices and/or zero matrices. The null spaces of these low-density arrays give a family of QC-EG-LDPC codes. Codes in a special subclass have large minimum distances and their Tanner graphs contain no harmful trapping sets with sizes smaller than their minimum distances.
  • Keywords
    Fourier transforms; cyclic codes; graph theory; inverse transforms; matrix algebra; parity check codes; Fourier transform domain; QC-EG LDPC codes; QC-EG-LDPC codes; Tanner graphs; base matrices; circulant permutation matrices; column permutations; finite field; harmful trapping sets; inverse Fourier transforms; low-density arrays; null spaces; quasicyclic Euclidean geometry LDPC codes; row permutations; transform approach; zero matrices; Fourier transforms; Generators; Geometry; Null space; Parity check codes; Vectors;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Information Theory and Applications Workshop (ITA), 2012
  • Conference_Location
    San Diego, CA
  • Print_ISBN
    978-1-4673-1473-2
  • Type

    conf

  • DOI
    10.1109/ITA.2012.6181800
  • Filename
    6181800