DocumentCode :
172907
Title :
D-Mash: A Framework for Privacy-Preserving Data-as-a-Service Mashups
Author :
Arafati, Mahtab ; Dagher, Gaby G. ; Fung, Benjamin C. M. ; Hung, Patrick C. K.
Author_Institution :
CIISE, Concordia Univ., Montreal, QC, Canada
fYear :
2014
fDate :
June 27 2014-July 2 2014
Firstpage :
498
Lastpage :
505
Abstract :
Data-as-a-Service (DaaS) mashup enables data providers to dynamically integrate their data on demand depending on consumers´ requests. Utilizing DaaS mashup, however, involves some challenges. Mashing up data from multiple sources to answer a consumer´s request might reveal sensitive information and thereby compromise the privacy of individuals. Moreover, data integration of arbitrary DaaS providers might not always be sufficient to answer incoming requests. In this paper, we provide a cloud-based framework for privacy-preserving DaaS mashup that enables secure collaboration between DaaS providers for the purpose of generating an anonymous dataset to support data mining. Experiments on real-life data demonstrate that our DaaS mashup framework is scalable and can efficiently and effectively satisfy the data privacy and data mining requirements specified by the DaaS providers and the data consumers.
Keywords :
Web services; data mining; data privacy; D-Mash; DaaS mashup; cloud-based framework; data consumers; data mining; dynamic data integration; privacy-preserving data-as-a-service mashups; real-life data; Accuracy; Couplings; Data privacy; Mashups; Privacy; Simple object access protocol; anonymization; data mashup; data mining; data privacy; web services;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Cloud Computing (CLOUD), 2014 IEEE 7th International Conference on
Conference_Location :
Anchorage, AK
Print_ISBN :
978-1-4799-5062-1
Type :
conf
DOI :
10.1109/CLOUD.2014.73
Filename :
6973779
Link To Document :
بازگشت