Title :
Majority and Other Polynomials in Minimal Clones
Author :
Machida, Hajime ; Waldhauser, Tamás
Author_Institution :
Dept. of Math., Hitotsubashi Univ., Tokyo
Abstract :
A minimal clone is an atom of the lattice of clones. A minimal function is, briefly saying, a function which generates a minimal clone. For a prime power k we consider the base set with k elements as a finite field GF(k). We present binary idempotent minimal polynomials and ternary majority minimal polynomials over GF(3) and generalize them to minimal polynomials over GF(k) for any prime power k ges3.
Keywords :
polynomials; binary idempotent minimal polynomial; finite field; minimal clone; ternary majority minimal polynomial; Cloning; Galois fields; Lattices; Multivalued logic; Polynomials; Resists; Terminology; Galois field; clone; minimal clone; polynomial;
Conference_Titel :
Multiple Valued Logic, 2008. ISMVL 2008. 38th International Symposium on
Conference_Location :
Dallas, TX
Print_ISBN :
978-0-7695-3155-7
DOI :
10.1109/ISMVL.2008.38