Title :
Numerical calculation of scattering from a conducting sphere by using Greengard-Rokhlin´s fast multipole algorithm
Author :
Nakashima, N. ; Tateiba, M.
Author_Institution :
Dept. of Comput. Sci. & Commun. Eng., Kyushu Univ., Fukuoka, Japan
Abstract :
Fast multipole algorithms (FMAs) are used in the numerical calculation of EM wave scattering as the acceleration technique. Previously, we applied Greengard-Rokhlin´s FMA (GRFMA) (Greengard, L. and Rokhlin, V., J. Comput. Phys., vol.73. p.325-48, 1987) to the numerical calculation of two-dimensional scattering and reduced the order of floating-point operations and the amount of used memory for the matrix-vector product to O(L), where L is the size of the matrix (Nakashima, N. and Tateiba, M., Proc. IEEE AP-S. vol.2. p.606-9, 2002; Proc. IEICE ISAP-i02, p.193-6, 2002). We now apply GRFMA to the numerical calculation of scattering from a conducting sphere as a simple example of three-dimensional scattering, and estimate the orders of both the computation time and used memory.
Keywords :
conducting bodies; electromagnetic wave scattering; matrix multiplication; parameter estimation; EM wave scattering; Greengard-Rokhlin fast multipole algorithm; computation time; conducting sphere; matrix-vector product; three-dimensional scattering; two-dimensional scattering; used memory; Acceleration; Ambient intelligence; Computational Intelligence Society; Computer science; Equations; Iterative methods; Linear systems; Moment methods; Neodymium; Scattering;
Conference_Titel :
Antennas and Propagation Society International Symposium, 2003. IEEE
Conference_Location :
Columbus, OH, USA
Print_ISBN :
0-7803-7846-6
DOI :
10.1109/APS.2003.1217393