DocumentCode :
1737206
Title :
Discrete-time nonlinear systems inverse optimal control: A control Lyapunov function approach
Author :
Ornelas, Fernando ; Sanchez, Edgar N. ; Loukianov, Alexander G.
Author_Institution :
CINVESTAV, Guadalajara, Mexico
fYear :
2011
Firstpage :
1431
Lastpage :
1436
Abstract :
This paper presents an inverse optimal control approach for exponential stabilization of discrete-time nonlinear systems, avoiding to solve the associated Hamilton-Jacobi-Bellman (HJB) equation, and minimizing a meaningful cost function. This stabilizing optimal controller is based on a discrete-time control Lyapunov function. The applicability of the proposed approach is illustrated via simulations by stabilization of an example.
Keywords :
Jacobian matrices; Lyapunov matrix equations; asymptotic stability; discrete time systems; inverse problems; minimisation; nonlinear control systems; optimal control; Hamilton-Jacobi-Bellman equation; control Lyapunov function; cost function minimization; discrete time nonlinear system; exponential stabilization; inverse optimal control approach; Cost function; Equations; Lyapunov methods; Mathematical model; Nonlinear systems; Optimal control; Symmetric matrices;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Control Applications (CCA), 2011 IEEE International Conference on
Conference_Location :
Denver, CO
Print_ISBN :
978-1-4577-1062-9
Electronic_ISBN :
978-1-4577-1061-2
Type :
conf
DOI :
10.1109/CCA.2011.6044461
Filename :
6044461
Link To Document :
بازگشت