DocumentCode :
1738151
Title :
The stabilization control of nonlinear complex systems using adaptive fuzzy-neuro controller
Author :
Kim, Geun ; Han Ho Tack ; Kim, Myung Gyu
Author_Institution :
Dept. of Mech. Eng., Chinju Nat. Univ., Kyungnam, South Korea
Volume :
1
fYear :
2000
fDate :
2000
Firstpage :
414
Abstract :
A stabilization control method using an adaptive fuzzy neurocontroller is proposed for the modeling of nonlinear complex systems. The proposed adaptive fuzzy neurocontroller implements the system structure and parameter identification, using intelligent schemes together with optimization theory, linguistic fuzzy implication rules and neural networks, from the input and output data of processes. The results show that the proposed method can produce an intelligent model with higher accuracy than other works have achieved previously
Keywords :
adaptive control; fuzzy control; fuzzy neural nets; intelligent control; large-scale systems; neurocontrollers; nonlinear control systems; optimal control; optimisation; parameter estimation; stability; adaptive fuzzy neurocontroller; intelligent schemes; linguistic fuzzy implication rules; model accuracy; neural networks; nonlinear complex systems modelling; optimization theory; parameter identification; process input data; process output data; stabilization control; system structure; Adaptive control; Adaptive systems; Control systems; Fuzzy control; Fuzzy neural networks; Fuzzy systems; Neurocontrollers; Nonlinear control systems; Parameter estimation; Programmable control;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Knowledge-Based Intelligent Engineering Systems and Allied Technologies, 2000. Proceedings. Fourth International Conference on
Conference_Location :
Brighton
Print_ISBN :
0-7803-6400-7
Type :
conf
DOI :
10.1109/KES.2000.885844
Filename :
885844
Link To Document :
بازگشت