DocumentCode :
1739132
Title :
Bayesian methods for autoregressive models
Author :
Penny, W.D. ; Roberts, S.J.
Author_Institution :
Dept. of Eng. Sci., Oxford Univ., UK
Volume :
1
fYear :
2000
fDate :
2000
Firstpage :
125
Abstract :
We describe a variational Bayesian (VB) learning algorithm for parameter estimation and model order selection in antoregressive (AR) models. With uninformative priors on the precisions of the coefficient and noise distributions the VB framework is shown to be identical to the Bayesian evidence framework. The VB model order selection criterion is compared with the minimum description length (MDL) criterion on synthetic data and on EEG
Keywords :
Bayes methods; autoregressive processes; parameter estimation; Bayesian methods; EEG; autoregressive models; minimum description length criterion; model order selection; noise distributions; parameter estimation; synthetic data; uninformative priors; variational Bayesian learning algorithm; Bayesian methods; Brain modeling; Context modeling; Electroencephalography; Gaussian noise; History; Maximum likelihood estimation; Parameter estimation; Principal component analysis; Stochastic processes;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Neural Networks for Signal Processing X, 2000. Proceedings of the 2000 IEEE Signal Processing Society Workshop
Conference_Location :
Sydney, NSW
ISSN :
1089-3555
Print_ISBN :
0-7803-6278-0
Type :
conf
DOI :
10.1109/NNSP.2000.889369
Filename :
889369
Link To Document :
بازگشت