DocumentCode :
1744255
Title :
Homoclinic chaos in inverted pendula
Author :
Verduzco, Fernando ; Alvarez, Joaquín
Author_Institution :
Inst. Tecnologico de Sonora, Mexico
Volume :
5
fYear :
2000
fDate :
2000
Firstpage :
4821
Abstract :
The existence of homoclinic chaos in the dynamics of two kinds of pendula with linear viscous damping, is proved via Melnikov´s method. We consider the classical inverted pendulum, whose pivot can move horizontally on a cart, and the rotating inverted pendulum. Both devices are two degrees of freedom (2-DOF) underactuated systems. We analyze the case when the motion of the actuated part is periodic, with a sufficiently small amplitude
Keywords :
chaos; damping; nonlinear control systems; pendulums; periodic control; 2-DOF underactuated systems; Melnikov method; cart-pole system; homoclinic chaos; linear viscous damping; periodic motion; rotating inverted pendulum; Acceleration; Bifurcation; Chaos; Control systems; Damping; Friction; Mechanical systems; Motion analysis; Motion control; Torque control;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 2000. Proceedings of the 39th IEEE Conference on
Conference_Location :
Sydney, NSW
ISSN :
0191-2216
Print_ISBN :
0-7803-6638-7
Type :
conf
DOI :
10.1109/CDC.2001.914691
Filename :
914691
Link To Document :
بازگشت