• DocumentCode
    1745009
  • Title

    A neural architecture for the parameter extraction of high frequency devices [MMICs]

  • Author

    Avitabile, G. ; Chellini, B. ; Fedi, G. ; Luchetta, A. ; Manetti, S.

  • Author_Institution
    Dipt. di Ingegneria Elettrica, Bari Univ., Italy
  • Volume
    3
  • fYear
    2001
  • fDate
    6-9 May 2001
  • Firstpage
    577
  • Abstract
    A novel optimization technique for the parameter identification of microwave monolithic integrated circuits is presented. It is based on a hybrid neural network whose learning process convergence allows the validation of the circuit approximated lumped model. The main feature of such a learning process is that no external desired signal is required and the neural network can be considered of the unsupervised type. Furthermore, the neural network output represents the lumped circuit parameter estimation
  • Keywords
    MMIC; circuit CAD; circuit optimisation; convergence; integrated circuit design; multilayer perceptrons; neural net architecture; parameter estimation; unsupervised learning; HF devices; MMIC parameter identification; circuit approximated lumped model; high frequency devices; hybrid neural network; learning process convergence; lumped circuit parameter estimation; microwave monolithic integrated circuits; neural architecture; optimization technique; parameter extraction; unsupervised type; Artificial neural networks; Circuit testing; Frequency; Microwave devices; Microwave theory and techniques; Monolithic integrated circuits; Neural networks; Parameter estimation; Parameter extraction; Signal processing;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Circuits and Systems, 2001. ISCAS 2001. The 2001 IEEE International Symposium on
  • Conference_Location
    Sydney, NSW
  • Print_ISBN
    0-7803-6685-9
  • Type

    conf

  • DOI
    10.1109/ISCAS.2001.921376
  • Filename
    921376