DocumentCode :
1745030
Title :
A backpropagation learning framework for feedforward neural networks
Author :
Yu, Xinghuo ; Efe, M Onder ; Kaynak, Okyay
Author_Institution :
Fac. of Inf. & Commun., Central Queensland Univ., Rockhampton, Qld., Australia
Volume :
3
fYear :
2001
fDate :
6-9 May 2001
Firstpage :
700
Abstract :
In this paper, a general backpropagation learning framework for the training of feedforward neural networks is proposed. The convergence to global minimum under the framework is investigated using the Lyapunov stability theory. It is shown the existing feedforward neural network training algorithms are special cases of the proposed framework
Keywords :
Lyapunov methods; backpropagation; convergence; feedforward neural nets; Lyapunov stability theory; backpropagation learning framework; convergence; feedforward neural networks; global minimum; training algorithms; Backpropagation algorithms; Convergence; Data mining; Feedforward neural networks; Function approximation; Informatics; Lyapunov method; Neural networks; Neurons; Predictive models;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Circuits and Systems, 2001. ISCAS 2001. The 2001 IEEE International Symposium on
Conference_Location :
Sydney, NSW
Print_ISBN :
0-7803-6685-9
Type :
conf
DOI :
10.1109/ISCAS.2001.921407
Filename :
921407
Link To Document :
بازگشت