Author :
Nakano, H. ; Kawano, T. ; Mimaki, H. ; Yamauchi, J.
Abstract :
An integral equation for an arbitrarily shaped printed wire antenna has been derived and solved with the help of the method of moments (MoM). So far, zigzag dipole, loop, and spiral antennas have been analyzed using this integral equation. Conventionally, the MoM impedance matrix element Zm,n is composed of four terms gm-1, n-1, gm-1, n, gm, n-1, and gm, n each involving a triple integral and requiring a long time to compute. This paper presents a new representation of the MoM impedance matrix element, which drastically reduces the computation time, compared with the time required using the conventional impedance element. The new representation is based on a technique for decomposition of the Green´s functions, each function being decomposed into a weighted free-space Green´s function term and a perturbation term. The decomposition yields a new MoM impedance matrix element, ZNEW,m, n, which is composed of three terms, ZψSm, n, and Zψm, n, and ΔZm, n, involving single, double, and triple integrals, respectively. Obviously, the calculation of the new impedance matrix element ZNEWm, n, is simpler than that of the conventional impedance matrix element Zm, n, resulting in a reduction in computation time
Keywords :
Green´s function methods; current distribution; impedance matrix; integral equations; method of moments; microstrip antenna arrays; Green´s functions decomposition; MoM impedance matrix element; computation time reduction; double integral; fast MoM calculation; integral equation; method of moments; perturbation term; printed grid array antenna; printed wire antenna; single integral; triple integral; weighted free-space Green´s function term;