DocumentCode :
1747446
Title :
Edge-based features from omnidirectional images for robot localization
Author :
Vlassis, Nikos ; Motomura, Yoichi ; Hara, Isao ; Asoh, Hideki ; Matsui, Toshihiro
Author_Institution :
RWCP, Amsterdam Univ., Netherlands
Volume :
2
fYear :
2001
fDate :
2001
Firstpage :
1579
Abstract :
We propose a method for extracting low-dimensional features from omnidirectional images to be used for robot localization and navigation. Edge detection is combined with thresholding to locate sharp edge pixels, the coordinates of which are fed into a Parzen density estimator (1962) to compute the edge spatial density. The use of the fast Fourier transform makes this density estimate feasible in real-time, while principal component analysis further drops the dimensionality of the resulting feature vector to a manageable number. We show experimental results from a Nomad XR4000 robot in an office environment.
Keywords :
CCD image sensors; computerised navigation; edge detection; fast Fourier transforms; feature extraction; mobile robots; principal component analysis; robot vision; FFT; Nomad XR4000 robot; PCA; Parzen density estimator; density estimate; edge detection; edge spatial density; edge-based features; fast Fourier transform; feature vector; low-dimensional feature extraction; omnidirectional images; principal component analysis; robot localization; robot navigation; sharp edge pixel location; Cameras; Feature extraction; Image edge detection; Interpolation; Laboratories; Mobile robots; Navigation; Robot kinematics; Robot localization; Robot vision systems;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on
ISSN :
1050-4729
Print_ISBN :
0-7803-6576-3
Type :
conf
DOI :
10.1109/ROBOT.2001.932836
Filename :
932836
Link To Document :
بازگشت