Title :
Combining internal and external robot models to improve model parameter estimation
Author :
Verdonck, W. ; Swevers, J. ; Chenut, X. ; Samin, J.C.
Author_Institution :
Dept. of Mech. Eng., Katholieke Univ., Leuven, Belgium
Abstract :
Experimental robot identification techniques can principally be divided into two categories, based on the type of models they use: internal or external. Internal models relate the joint torques or forces and the motion of the robot; external models relate the reaction forces and torques on the bedplate and the motion data. This paper describes how internal and external robot models can be combined into one identifiable minimal model. This model allows to combine joint torque/force and reaction torque/force measurements in one parameter estimation scheme. This combined model estimation will yield more accurate parameter estimates, and consequently better actuator torque predictions, which is shown experimentally on an industrial robot (KUKA IR 361).
Keywords :
actuators; parameter estimation; robot dynamics; KUKA IR 361; bedplate; external robot models; industrial robot; internal robot models; joint forces; joint torques; model parameter estimation; reaction forces; reaction torques; robot identification techniques; robot motion; Actuators; Force measurement; Motion measurement; Parameter estimation; Predictive models; Robot kinematics; Robot sensing systems; Service robots; Torque control; Torque measurement;
Conference_Titel :
Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on
Print_ISBN :
0-7803-6576-3
DOI :
10.1109/ROBOT.2001.933053