DocumentCode :
1747891
Title :
Dependency preserving probabilistic modeling of switching activity using Bayesian networks
Author :
Bhanja, Sanjukta ; Ranganathan, N.
Author_Institution :
Center for Microelectron. Res., Univ. of South Florida, Tampa, FL, USA
fYear :
2001
fDate :
2001
Firstpage :
209
Lastpage :
214
Abstract :
We propose a new switching probability model for combinational circuits using a logic-induced-directed-acyclic-graph (LIDBG) and prove that such a graph corresponds to a Bayesian network guaranteed to map all the dependencies inherent in the circuit. This switching activity can be estimated by capturing complex dependencies (spatiotemporal and conditional) among signals efficiently by local message-passing based on the Bayesian networks. Switching activity estimation of ISCAS and MCNC circuits with random input streams yield high accuracy (average mean error=0.002) and low computational time (average time=3.93 seconds).
Keywords :
belief networks; combinational circuits; logic CAD; probability; 3.93 s; Bayesian network; Bayesian networks; ISCAS circuits; MCNC circuits; combinational circuits; computational time; conditional complex dependencies; dependency preserving probabilistic modeling; local message-passing; logic-induced-directed-acyclic-graph; mean error; spatiotemporal complex dependencies; switching activity; Bayesian methods; Circuit simulation; Computational modeling; Computer science; Microelectronics; Permission; Probability distribution; Random variables; Switching circuits; Yield estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Design Automation Conference, 2001. Proceedings
ISSN :
0738-100X
Print_ISBN :
1-58113-297-2
Type :
conf
DOI :
10.1109/DAC.2001.156137
Filename :
935506
Link To Document :
بازگشت