DocumentCode :
1748625
Title :
Reducing drift in parametric motion tracking
Author :
Rahimi, A. ; Morency, L.-P. ; Darrell, T.
Author_Institution :
Artificial Intelligence Lab., MIT, Cambridge, MA, USA
Volume :
1
fYear :
2001
fDate :
2001
Firstpage :
315
Abstract :
We develop a class of differential motion trackers that automatically stabilize when in finite domains. Most differential trackers compute motion only relative to one previous frame, accumulating errors indefinitely. We estimate pose changes between a set of past frames, and develop a probabilistic framework for integrating those estimates. We use an approximation to the posterior distribution of pose changes as an uncertainty model for parametric motion in order to help arbitrate the use of multiple base frames. We demonstrate this framework on a simple 2D translational tracker and a 3D, 6-degree of freedom tracker
Keywords :
computer vision; motion estimation; 2D translational tracker; 6-degree of freedom tracker; differential motion trackers; drift reduction; finite domains; multiple base frames; parametric motion; parametric motion tracking; pose changes; posterior distribution; probabilistic framework; uncertainty model; Artificial intelligence; Cameras; Fuses; Layout; Maximum likelihood estimation; Measurement uncertainty; Motion estimation; Parameter estimation; Tracking; Video sequences;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE International Conference on
Conference_Location :
Vancouver, BC
Print_ISBN :
0-7695-1143-0
Type :
conf
DOI :
10.1109/ICCV.2001.937535
Filename :
937535
Link To Document :
بازگشت