• DocumentCode
    1748893
  • Title

    Image approximation and smoothing by support vector regression

  • Author

    Chow, Dick Kai Tik ; Lee, Tong

  • Author_Institution
    Dept. of Electron. Eng., Chinese Univ. of Hong Kong, Shatin, China
  • Volume
    4
  • fYear
    2001
  • fDate
    2001
  • Firstpage
    2427
  • Abstract
    A new image representation by support vector regression (SVR) is introduced. After a grey level image is approximated as a continuous function using SVR, which maps a 2D pixel coordinate input into a 1D pixel grey level output, the image can then be expressed in terms of the extracted support vectors and their corresponding Lagrange multipliers. The image is reconstructed by a linear combination of kernels with weights equal to the values of Lagrange multipliers. With support vector representation, we can observed that: 1) it is able to remove noise from image, the denoising effect of SVR representation is implicit during image encoding, and it can be controlled by the SVR training parameters; 2) if a Gaussian RBF kernel is used in SVR representation, Gaussian smoothing can be easily implemented by increasing the variance of kernel during image reconstruction and sharpening can be done by reducing the variance
  • Keywords
    function approximation; image reconstruction; image representation; learning (artificial intelligence); neural nets; smoothing methods; Gaussian RBF kernel; Lagrange multipliers; function approximation; grey level; image encoding; image reconstruction; image representation; learning parameter; support vector regression; Gaussian noise; Image coding; Image reconstruction; Image representation; Kernel; Lagrangian functions; Noise reduction; Pixel; Smoothing methods; Vectors;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Neural Networks, 2001. Proceedings. IJCNN '01. International Joint Conference on
  • Conference_Location
    Washington, DC
  • ISSN
    1098-7576
  • Print_ISBN
    0-7803-7044-9
  • Type

    conf

  • DOI
    10.1109/IJCNN.2001.938747
  • Filename
    938747