• DocumentCode
    1749062
  • Title

    A neural network based identification system for VIRGO seismic noise

  • Author

    Acernese, F. ; Barone, F. ; De Rosa, R. ; Eleuteri, A. ; Milano, L. ; Tagliaferri, R.

  • Author_Institution
    Dipartimento di Sci. Fisiche, Naples Univ., Italy
  • Volume
    1
  • fYear
    2001
  • fDate
    2001
  • Firstpage
    252
  • Abstract
    A neural network based approach is presented for the real time seismic noise identification of a GW laser interferometric antenna. The procedure allows the estimation of seismic events in a background noise. The recognition of such events is very important for the data quality of the interferometer output. The algorithm the authors propose is quite general and robust, taking into account that it does not require a-priori information on the data, nor precise model, and constitutes a powerful tool for quality data analysis
  • Keywords
    astronomical instruments; astronomy computing; data analysis; gravitational wave detectors; light interferometers; neural nets; VIRGO; algorithm; astronomical instrument; astronomy; data analysis; gravitational radiation; gravitational wave detector; identification system; laser interferometric antenna; laser interferometry; light interferometer; measurement technique; neural net; neural network; real time; seismic event; seismic noise; Acceleration; Accelerometers; Background noise; Extraterrestrial measurements; Instruments; Laser noise; Mirrors; Neural networks; Optical interferometry; Optical sensors;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Neural Networks, 2001. Proceedings. IJCNN '01. International Joint Conference on
  • Conference_Location
    Washington, DC
  • ISSN
    1098-7576
  • Print_ISBN
    0-7803-7044-9
  • Type

    conf

  • DOI
    10.1109/IJCNN.2001.939026
  • Filename
    939026