DocumentCode :
1749062
Title :
A neural network based identification system for VIRGO seismic noise
Author :
Acernese, F. ; Barone, F. ; De Rosa, R. ; Eleuteri, A. ; Milano, L. ; Tagliaferri, R.
Author_Institution :
Dipartimento di Sci. Fisiche, Naples Univ., Italy
Volume :
1
fYear :
2001
fDate :
2001
Firstpage :
252
Abstract :
A neural network based approach is presented for the real time seismic noise identification of a GW laser interferometric antenna. The procedure allows the estimation of seismic events in a background noise. The recognition of such events is very important for the data quality of the interferometer output. The algorithm the authors propose is quite general and robust, taking into account that it does not require a-priori information on the data, nor precise model, and constitutes a powerful tool for quality data analysis
Keywords :
astronomical instruments; astronomy computing; data analysis; gravitational wave detectors; light interferometers; neural nets; VIRGO; algorithm; astronomical instrument; astronomy; data analysis; gravitational radiation; gravitational wave detector; identification system; laser interferometric antenna; laser interferometry; light interferometer; measurement technique; neural net; neural network; real time; seismic event; seismic noise; Acceleration; Accelerometers; Background noise; Extraterrestrial measurements; Instruments; Laser noise; Mirrors; Neural networks; Optical interferometry; Optical sensors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Neural Networks, 2001. Proceedings. IJCNN '01. International Joint Conference on
Conference_Location :
Washington, DC
ISSN :
1098-7576
Print_ISBN :
0-7803-7044-9
Type :
conf
DOI :
10.1109/IJCNN.2001.939026
Filename :
939026
Link To Document :
بازگشت