Title :
A nonlinear function for gradient based BSS
Author :
Singh, Yogesh ; Rai, C.S.
Author_Institution :
Sch. of Inf. Technol., G.G.S. Indraprastha Univ., Delhi, India
Abstract :
Blind source separation (BSS) deals with separating independent signals form their linear mixtures observed at different sensors. In this paper a nonlinear function based on the cost function as a Kullback-Leibler divergence between the joint probability density function of the source vector and its parametric model, is proposed. This cost function is equivalent to maximization of the information transfer between inputs and outputs, and minimization of the mutual information between components of the output vector. Derivation process becomes extremely simple due to a simple approximation. Simulations with communication signals indicate that the proposed algorithm provides better accuracy
Keywords :
gradient methods; nonlinear functions; optimisation; probability; signal detection; Kullback-Leibler divergence; blind source separation; cost function; gradient method; information transfer; nonlinear function; optimisation; probability density function; Blind source separation; Brain modeling; Cost function; Information technology; Mutual information; Parametric statistics; Probability density function; Signal processing; Source separation; Vectors;
Conference_Titel :
Neural Networks, 2001. Proceedings. IJCNN '01. International Joint Conference on
Conference_Location :
Washington, DC
Print_ISBN :
0-7803-7044-9
DOI :
10.1109/IJCNN.2001.939485