DocumentCode
1749486
Title
Asymptotic performance of ML channel estimators in WCDMA systems: randomized codes approach
Author
Mestre, Xavier ; Fonollosa, Javier R.
Author_Institution
Dept. de Teoria del Senyal i Comunicacions, Univ. Politecnica de Catalunya, Barcelona, Spain
Volume
4
fYear
2001
fDate
2001
Firstpage
2201
Abstract
This paper analyzes the asymptotic performance of maximum likelihood (ML) channel estimation algorithms in wideband code division multiple access (WCDMA) scenarios. We concentrate on systems with periodic spreading sequences (period larger than or equal to the symbol span) with high spreading factors, where the transmitted signal contains a code division multiplexed pilot for channel estimation purposes. Assuming randomized training and code sequences, we derive and compare the asymptotic covariances of the training-only (TO), semi-blind conditional ML (CML) and semi-blind Gaussian ML (GML) channel estimators
Keywords
binary sequences; channel coding; code division multiple access; covariance matrices; maximum likelihood sequence estimation; mobile radio; randomised algorithms; spread spectrum communication; ML channel estimation; WCDMA; asymptotic covariances; code division multiplexed pilot; code sequences; maximum likelihood estimation; periodic spreading sequences; randomized codes; randomized training; semi-blind Gaussian ML estimators; semi-blind conditional ML estimators; spreading factors; training-only channel estimators; wideband code division multiple access; Algorithm design and analysis; Artificial satellites; Channel estimation; Code division multiplexing; Maximum likelihood estimation; Mobile communication; Multiaccess communication; Performance analysis; Signal analysis; Wideband;
fLanguage
English
Publisher
ieee
Conference_Titel
Acoustics, Speech, and Signal Processing, 2001. Proceedings. (ICASSP '01). 2001 IEEE International Conference on
Conference_Location
Salt Lake City, UT
ISSN
1520-6149
Print_ISBN
0-7803-7041-4
Type
conf
DOI
10.1109/ICASSP.2001.940433
Filename
940433
Link To Document