• DocumentCode
    1749486
  • Title

    Asymptotic performance of ML channel estimators in WCDMA systems: randomized codes approach

  • Author

    Mestre, Xavier ; Fonollosa, Javier R.

  • Author_Institution
    Dept. de Teoria del Senyal i Comunicacions, Univ. Politecnica de Catalunya, Barcelona, Spain
  • Volume
    4
  • fYear
    2001
  • fDate
    2001
  • Firstpage
    2201
  • Abstract
    This paper analyzes the asymptotic performance of maximum likelihood (ML) channel estimation algorithms in wideband code division multiple access (WCDMA) scenarios. We concentrate on systems with periodic spreading sequences (period larger than or equal to the symbol span) with high spreading factors, where the transmitted signal contains a code division multiplexed pilot for channel estimation purposes. Assuming randomized training and code sequences, we derive and compare the asymptotic covariances of the training-only (TO), semi-blind conditional ML (CML) and semi-blind Gaussian ML (GML) channel estimators
  • Keywords
    binary sequences; channel coding; code division multiple access; covariance matrices; maximum likelihood sequence estimation; mobile radio; randomised algorithms; spread spectrum communication; ML channel estimation; WCDMA; asymptotic covariances; code division multiplexed pilot; code sequences; maximum likelihood estimation; periodic spreading sequences; randomized codes; randomized training; semi-blind Gaussian ML estimators; semi-blind conditional ML estimators; spreading factors; training-only channel estimators; wideband code division multiple access; Algorithm design and analysis; Artificial satellites; Channel estimation; Code division multiplexing; Maximum likelihood estimation; Mobile communication; Multiaccess communication; Performance analysis; Signal analysis; Wideband;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Acoustics, Speech, and Signal Processing, 2001. Proceedings. (ICASSP '01). 2001 IEEE International Conference on
  • Conference_Location
    Salt Lake City, UT
  • ISSN
    1520-6149
  • Print_ISBN
    0-7803-7041-4
  • Type

    conf

  • DOI
    10.1109/ICASSP.2001.940433
  • Filename
    940433