Title :
Asymptotic performance of ML channel estimators in WCDMA systems: randomized codes approach
Author :
Mestre, Xavier ; Fonollosa, Javier R.
Author_Institution :
Dept. de Teoria del Senyal i Comunicacions, Univ. Politecnica de Catalunya, Barcelona, Spain
Abstract :
This paper analyzes the asymptotic performance of maximum likelihood (ML) channel estimation algorithms in wideband code division multiple access (WCDMA) scenarios. We concentrate on systems with periodic spreading sequences (period larger than or equal to the symbol span) with high spreading factors, where the transmitted signal contains a code division multiplexed pilot for channel estimation purposes. Assuming randomized training and code sequences, we derive and compare the asymptotic covariances of the training-only (TO), semi-blind conditional ML (CML) and semi-blind Gaussian ML (GML) channel estimators
Keywords :
binary sequences; channel coding; code division multiple access; covariance matrices; maximum likelihood sequence estimation; mobile radio; randomised algorithms; spread spectrum communication; ML channel estimation; WCDMA; asymptotic covariances; code division multiplexed pilot; code sequences; maximum likelihood estimation; periodic spreading sequences; randomized codes; randomized training; semi-blind Gaussian ML estimators; semi-blind conditional ML estimators; spreading factors; training-only channel estimators; wideband code division multiple access; Algorithm design and analysis; Artificial satellites; Channel estimation; Code division multiplexing; Maximum likelihood estimation; Mobile communication; Multiaccess communication; Performance analysis; Signal analysis; Wideband;
Conference_Titel :
Acoustics, Speech, and Signal Processing, 2001. Proceedings. (ICASSP '01). 2001 IEEE International Conference on
Conference_Location :
Salt Lake City, UT
Print_ISBN :
0-7803-7041-4
DOI :
10.1109/ICASSP.2001.940433