DocumentCode :
1749691
Title :
An EKF-based algorithm for learning statistical hidden dynamic model parameters for phonetic recognition
Author :
Togneri, Roberto ; Deng, Li
Author_Institution :
Univ. of Western Australia, WA, Australia
Volume :
1
fYear :
2001
fDate :
2001
Firstpage :
465
Abstract :
Presents a parameter estimation algorithm based on the extended Kalman filter (EKF) for the statistical coarticulatory hidden dynamic model (HDM). We show how the EKF parameter estimation algorithm unifies and simplifies the estimation of both the state and parameter vectors. Experiments based on N-best rescoring demonstrate superior performance of the (context-independent) HDM over a triphone baseline HMM in the TIMIT phonetic recognition task. We also show that the HDM is capable of generating speech vectors close to those from the corresponding real data
Keywords :
Kalman filters; filtering theory; hidden Markov models; nonlinear filters; parameter estimation; speech recognition; state estimation; N-best rescoring; TIMIT phonetic recognition task; extended Kalman filter; parameter estimation algorithm; phonetic recognition; speech vectors generation; statistical coarticulatory hidden dynamic model; triphone baseline HMM; Additive noise; Covariance matrix; Gaussian noise; Gaussian processes; Jacobian matrices; Multilayer perceptrons; Nonlinear equations; Parameter estimation; State estimation; Switches;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech, and Signal Processing, 2001. Proceedings. (ICASSP '01). 2001 IEEE International Conference on
Conference_Location :
Salt Lake City, UT
ISSN :
1520-6149
Print_ISBN :
0-7803-7041-4
Type :
conf
DOI :
10.1109/ICASSP.2001.940868
Filename :
940868
Link To Document :
بازگشت