DocumentCode :
1750563
Title :
Linear fuzzy clustering using eigenvalues for optimization of dimensional coefficients
Author :
Umayahara, Kazutaka ; Miyamoto, Sadaaki ; Nakamori, Yoshiteru
Author_Institution :
Japan Adv. Inst. of Sci. & Technol., Ishikawa, Japan
fYear :
2001
fDate :
25-28 July 2001
Firstpage :
2517
Abstract :
This paper considers the problem of detecting local linear substructures of a system in a high-dimensional data space by applying a fuzzy clustering technique. We propose a linear fuzzy clustering method using eigenvalues of the fuzzy scatter matrix in the objective function for optimizing the dimensional coefficients. The optimal solutions for the objective function and some illustrative examples are shown in this paper
Keywords :
S-matrix theory; dimensions; eigenvalues and eigenfunctions; fuzzy set theory; linear systems; optimisation; pattern clustering; dimensional coefficients optimization; eigenvalues; fuzzy scatter matrix; high-dimensional data space; linear fuzzy clustering; local linear substructure detection; objective function optimal solutions; Clustering algorithms; Clustering methods; Data engineering; Ear; Eigenvalues and eigenfunctions; Fuzzy sets; Fuzzy systems; Scattering; Space technology; Systems engineering and theory;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
IFSA World Congress and 20th NAFIPS International Conference, 2001. Joint 9th
Conference_Location :
Vancouver, BC
Print_ISBN :
0-7803-7078-3
Type :
conf
DOI :
10.1109/NAFIPS.2001.943618
Filename :
943618
Link To Document :
بازگشت