DocumentCode :
1751730
Title :
Fast algorithms for solving IQC feasibility and optimization problems
Author :
Kao, Chung-Yao ; Megretski, Alexandre
Author_Institution :
Lab. for Inf. & Decision Syst., MIT, MA, USA
Volume :
4
fYear :
2001
fDate :
2001
Firstpage :
3019
Abstract :
We investigate two different type of algorithms which are potentially very efficient for feasibility/optimization problems arising in integral quadratic constraints (IQC) analysis. A numerical example used to test those algorithms shows that they are much faster than the method conventionally used to solve IQC problems
Keywords :
computational complexity; convergence; eigenvalues and eigenfunctions; matrix algebra; optimisation; IQC feasibility problems; IQC optimization problems; fast algorithms; integral quadratic constraints analysis; Algorithm design and analysis; Control theory; Information analysis; Laboratories; Optimization methods; Robust control; Robust stability; Robustness; System testing; Uncertainty;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
American Control Conference, 2001. Proceedings of the 2001
Conference_Location :
Arlington, VA
ISSN :
0743-1619
Print_ISBN :
0-7803-6495-3
Type :
conf
DOI :
10.1109/ACC.2001.946376
Filename :
946376
Link To Document :
بازگشت