• DocumentCode
    1752614
  • Title

    A New Method of Data Compression in Multisensor Estimation Fusion

  • Author

    Xia, Yifan ; Zhu, Yunmin ; Zhou, Jie

  • Author_Institution
    Dept. of Math., Sichuan Univ., Chengdu
  • Volume
    1
  • fYear
    0
  • fDate
    0-0 0
  • Firstpage
    1405
  • Lastpage
    1409
  • Abstract
    Consider the decentralized estimation of an unknown parameter by bandwidth constrained sensor network with a fusion center. Local sensors make observations which are linearly scaled versions of these parameters corrupted by additive noises. For each sensor, the probability distribution function of the noise is known. In this paper, we propose a new approach that converts the estimation fusion problem to the decision fusion problem. With the methods of decision fusion, we find optimal local sensor compress rules which compress sensor observations into bits. The fusion center combines the transmitted bits from all the local sensors to generate a final estimation of the unknown parameter. Numerical examples show the efficiency of the new method
  • Keywords
    belief networks; data compression; parameter estimation; sensor fusion; statistical distributions; wireless sensor networks; Bayesian decision fusion; additive noises; data compression; fusion rule; multisensor estimation fusion; optimal sensor rule; parameter estimation; probability distribution function; Additive noise; Bandwidth; Data compression; Intelligent networks; Intelligent sensors; Parameter estimation; Probability distribution; Quantization; Sensor fusion; Wireless sensor networks; Bayesian decision fusion; Parameter estimation; data compression; optimal sensor rule and fusion rule;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Intelligent Control and Automation, 2006. WCICA 2006. The Sixth World Congress on
  • Conference_Location
    Dalian
  • Print_ISBN
    1-4244-0332-4
  • Type

    conf

  • DOI
    10.1109/WCICA.2006.1712579
  • Filename
    1712579