DocumentCode :
1752620
Title :
Study of State Estimation with Super Particle Filter
Author :
Liu, Tianjian ; Zhang, Xuping ; Zhu, Shanan
Author_Institution :
Coll. of Inf., Zhejiang Univ., Hangzhou
Volume :
1
fYear :
0
fDate :
0-0 0
Firstpage :
1434
Lastpage :
1437
Abstract :
Model with nonlinear and time variance is often met in the question of time sequence state estimation. It is not very good to solve it by EKF algorithm. We propose a new algorithm, super particle filter (SPF), which adds hyper parameters in state vector and estimates state and parameters simultaneously online. By the method, hype parameters can be adjusted to change with model automatically. The introduction of hyper parameters to state vector makes state space model nonlinear. For the reason, particle filter is applied to solve the nonlinear and non-Gaussian state space models. We compared this algorithm to the EKF algorithm. Experimental results show SPF algorithm increase 60% in accurate and 70% in time expenditure
Keywords :
Kalman filters; parameter estimation; particle filtering (numerical methods); state estimation; extended Kalman filtering; parameter estimation; state vector; super particle filter; time sequence state estimation; time variance; Automation; Educational institutions; Gold; Intelligent control; Parameter estimation; Particle filters; Reactive power; State estimation; State-space methods; Parameter estimation; State etimation; Super Particle Filter;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Control and Automation, 2006. WCICA 2006. The Sixth World Congress on
Conference_Location :
Dalian
Print_ISBN :
1-4244-0332-4
Type :
conf
DOI :
10.1109/WCICA.2006.1712585
Filename :
1712585
Link To Document :
بازگشت