Title :
Sobolev Approximation in the Quantum Computation Model
Author :
Peixin, Ye ; Xiuhua, Yuan
Author_Institution :
LPMC, Nankai Univ., Tianjin, China
Abstract :
Using a new and elegant reduction approach we derive a lower bound of quantum complexity for the approximation of imbeddings from anisotropic Sobolev classes B(Wpr([0,1]d )) to anisotropic Sobolev space (Wps([0,1]d ) for all 1 ≥ p, q ≤ ∞ . When p≥q we show this bound is optimal by deriving the matching upper bound. In this case the quantum algorithms are not significantly better than the classical deterministic or randomized algorithms.
Keywords :
approximation theory; quantum computing; Sobolev approximation; anisotropic Sobolev classes; anisotropic Sobolev space; elegant reduction approach; quantum algorithms; quantum computation model; Approximation algorithms; Approximation methods; Complexity theory; Computational modeling; Computers; Quantum computing; Quantum mechanics; Sobolev imbedding; n-th minimal error; quantum setting;
Conference_Titel :
Intelligent Computation Technology and Automation (ICICTA), 2011 International Conference on
Conference_Location :
Shenzhen, Guangdong
Print_ISBN :
978-1-61284-289-9
DOI :
10.1109/ICICTA.2011.69