DocumentCode :
1754413
Title :
A General Exponential Framework for Dimensionality Reduction
Author :
Su-Jing Wang ; Shuicheng Yan ; Jian Yang ; Chun-Guang Zhou ; Xiaolan Fu
Author_Institution :
State Key Lab. of Brain & Cognitive Sci., Inst. of Psychol., Beijing, China
Volume :
23
Issue :
2
fYear :
2014
fDate :
Feb. 2014
Firstpage :
920
Lastpage :
930
Abstract :
As a general framework, Laplacian embedding, based on a pairwise similarity matrix, infers low dimensional representations from high dimensional data. However, it generally suffers from three issues: 1) algorithmic performance is sensitive to the size of neighbors; 2) the algorithm encounters the well known small sample size (SSS) problem; and 3) the algorithm de-emphasizes small distance pairs. To address these issues, here we propose exponential embedding using matrix exponential and provide a general framework for dimensionality reduction. In the framework, the matrix exponential can be roughly interpreted by the random walk over the feature similarity matrix, and thus is more robust. The positive definite property of matrix exponential deals with the SSS problem. The behavior of the decay function of exponential embedding is more significant in emphasizing small distance pairs. Under this framework, we apply matrix exponential to extend many popular Laplacian embedding algorithms, e.g., locality preserving projections, unsupervised discriminant projections, and marginal fisher analysis. Experiments conducted on the synthesized data, UCI, and the Georgia Tech face database show that the proposed new framework can well address the issues mentioned above.
Keywords :
data handling; face recognition; matrix algebra; visual databases; Georgia Tech face database; Laplacian embedding algorithms; SSS problem; algorithmic performance; decay function; dimensionality reduction; face recognition; general exponential framework; marginal fisher analysis; matrix exponential; pairwise similarity matrix; positive definite property; small sample size; unsupervised discriminant projections; Algorithm design and analysis; Educational institutions; Eigenvalues and eigenfunctions; Face; Kernel; Laplace equations; Principal component analysis; Face recognition; Laplacian embedding; dimensionality reduction; manifold learning; matrix exponential;
fLanguage :
English
Journal_Title :
Image Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1057-7149
Type :
jour
DOI :
10.1109/TIP.2013.2297020
Filename :
6698354
Link To Document :
بازگشت